SEDIMENTOLOGY, STRATIGRAPHIC VARIABILITY OF SHALE, AND CONTROLLING FACTORS AND PROCESSES

Introduction

What is Shale?

- > The most abundant sedimentary rock
- > Fine-grained, composed of > 50% vol. mud (clay + silt)
- Forms in all depositional environments

 lacustrine, fluvial, aeolian, deltaic, marine
- > Classified based on texture, bedding, organic content, etc.

Chattanooga Shale, Tennessee (https://mudstone.sitehost.iu.edu/field-photos-1.htm)

Introduction

Why is shale

- Paleogeographic interpretation
- > Hydrocarbon conventional/unconventional
- \succ CO₂ storage
- ➢ Green energy (shale gas?)
- > Metalliferous ore deposits
- > Many more...

Questions

- What are shale, shale lithofacies, processes, environmental conditions?
- What effects do sedimentary processes have on stratigraphic completeness of shales?
- □ What controls variability/cyclicity of shale?
 - □ Allogenic?
 - □ Autogenic?

Objectives

- > Understand the origin of shale
 - Processes associated with shale formation
 - degree of stratigraphic completeness and variability of shale
 - Distinguish allogenic from autogenic controls on shale deposition
 - Distinguish shales from different environments

SEM imaging

Different scales of observation of shales. Core and thin section photos from Dr Wan Yang. SEM image from Lin et al. (2017)

core

Expected Results

- □ An improved understanding of the processes controlling shale formation
- A new statistical-geochemical classification that provides details on shale origin
- Improved paleogeographic interpretation can be used to increase success rate of resource exploration

Tentative research plan

Tentative Budget

Analysis	Unit cost (\$)	units	Total (\$)
SEM	22	100 hours	2200
Thin section	40	100 samples	4000
Geochemical analysis	100	100 samples	10000
Grand total			16,200

Field Study: gas, rental car, lodging, field gears, etc.

Acknowledgment

- > Kummer Institute for Student Success, Research, and Economic Development
- > Advisor Dr. Wan Yang
- > Colleagues at McNutt Room 317

						1.					1.					1.					1.															1 A 4	1 T - 1	×.	
•	•	•	•	•		•		•		•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•		•	•	•	•		•	•	•	•		•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	
•	•	•	•			•	•	•		•	•		•	+	•	•		•		•			+		•	+	•	+		•		•	+		•	•	•	•	
•	•	•	•	•	+		+		•	+	•	+		•	+	•	+		•	+	•	+	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	
•														+									+			+	•	+		+			+			•	•	•	
	•																																			•			٢,

						1.					1.																									1 A 4	1 T - 1	×.	
•	•	•	•	•		•		•		•	•		•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	
•	•	•	•			•	•	•		•	•		•	+	•	•		•		•			+		•	+	•	+		•		•	+		•	•	•	•	
•	•	•	•	•	+		+		•	+	•	+		•	+	•	+	•	•	+	•	+	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	
•														+									+			+		+		+			+			•	•	•	
	•																																			•			٢,

						1.					1.																									1 T 1	1 T - 1	×.	
•	•	•	•	•		•		•		•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•			•	•	•		•	•		•	+	•	•	•	•		•			+		•	+	•	+		+		•	+		•	•	•	•	
•	•	•	•	•	+	•	+		•	+	•	+		•	+	•	+		•	+	•	+	•	•		•	+	•	•	•	•	•	•	•	•	•	•	•	
•														+									+			+		+		+			+	•	•	•	•	•	
	•																																			•			٢,

						1.						×.				1.					1.																	×.	
1	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
1	•	•	•			•					•							•					•														•	•	•
	•	•	•	•			•		•		•			•							•					•					•					•		•	•
1		•																																					
	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰.

The shale oil resource in-place is massive, estimated at 1,315 billion barrels. However, only a small portion - - 6.5% of this resource (85 billion barrels) - - is technically recoverable with current practices.

Use of Shale EOR would add 48 billion barrels, providing space for storing 20 billion metric tons of CO_2 .

Shale Basin/Formation	Resource In-Place	Prima Recov	ry ery	Incremental Oil Recovery from CO ₂ EOR	Storage of CO ₂
	(Billion Barreis)	(Billion Barrels)	(%)*	(Billion Barrels)	(Gmt)
1. Williston Basin/Bakken Shale	90.8	10.0	11.1%	3.7	1.5
2. South Texas/Eagle Ford Shale	139.3	12.6	9.0%	7.6	1.8
3. Permian Basin					
Midland Basin/Wolfcamp Shale	509.1	26.1	5.1%	14.2	6.5
Delaware Basin/Wolfcamp Shale	575.7	36.2	6.3%	21.8	10.0
Total	1,314.9	84.9	6.5%	47.5	19.9
*Primary Recovery as a % of OOIP.					JAF2020_021.XL
JAF2020_034.PPT September 23, 2020 www.adv-	res.com				

The Next Phase Of The Shale Oil Revolution - Storing CO₂ With Shale EOR (US Energy Association)